NIPS2011気になった論文リスト

  • NIPS2011のAccepted Papersが公開されました。(まだタイトルのみですが)
  • いつもどおり、備忘録です。
  • Active Learning, Crowd, Submodular, Manifoldといったキーワードが流行しているように見えます。
  • まだタイトルを眺めただけですが、NIPSは良い論文が多いですね…。

A Collaborative Mechanism for Crowdsourcing Prediction Problems

  • J. Abernethy, R. Frongillo

A Convergence Analysis of Log-Linear Training

  • S. Wiesler, H. Ney

Active Classification based on Value of Classifier

  • T. Gao, D. Koller

An Annealing Technique for Selecting Good Citizens on Manifolds

  • N. Shroff, P. Turaga, R. Chellappa
  • この論文タイトルをつけるセンスを見習いたい

A Non-Parametric Approach to Dynamic Programming

  • O. Kroemer, J. Peters

Beating SGD: Learning SVMs in Sublinear Time

  • E. Hazan, T. Koren, N. Srebro
  • 必読。

Better Mini-Batch Algorithms via Accelerated Gradient Methods

  • K. Sridharan, O. Shamir, A. Cotter, N. Srebro

Composite Multiclass Losses

  • R. Williamson, E. Vernet, M. Reid

Convergence Rates of Inexact Proximal-Gradient Methods for Convex Optimization

  • M. Schmidt, N. Le Roux, F. Bach

Distributed Delayed Stochastic Optimization

  • A. Agarwal, J. Duchi

Divide-and-Conquer Matrix Factorization

  • L. Mackey, A. Talwalkar, M. Jordan
  • 分散学習とかに適用できそうなタイトル…

Efficient Online Learning via Randomized Rounding

  • N. Cesa-Bianchi, O. Shamir
  • Sublinearといい、乱択系のが多い気がしますね

Fast and Accurate k-means For Large Datasets

  • M. Shindler, A. Meyerson, A. Wong
  • ICMLでいうNB枠…?

From Bandits to Experts: On the Value of Side-Observations

  • S. Mannor, O. Shamir

High-dimensional regression with noisy and missing data: Provable guarantees with non-convexity

  • P. Loh, M. Wainwright

Improved Algorithms for Linear Stochastic Bandits

  • Y. Abbasi-yadkori, D. Pal, C. Szepesvari

Large-Scale Sparse Principal Component Analysis with Application to Text Data

  • Y. Zhang, L. Ghaoui
  • 応用面では、これが気になる

Learning Anchor Planes for Classification

  • Z. Zhang, L. Ladicky, A. Saffari, P. Torr
  • 必読。

Learning large-margin halfspaces with more malicious noise

  • P. Long, R. Servedio

Lower Bounds for Passive and Active Learning

  • M. Raginsky, S. Rakhlin
  • Passive Learning…?

Multiclass Boosting: Theory and Algorithms

  • M. Saberian, N. Vasconcelos

Nearest Neighbor based Greedy Coordinate Descent

  • A. Tewari, P. Ravikumar, I. Dhillon

Newtron: an Efficient Bandit algorithm for Online Multiclass Prediction

  • E. Hazan, S. Kale
  • Perceptron一族に新たな仲間

Online Learning: Stochastic, Constrained, and Smoothed Adversaries

  • S. Rakhlin, K. Sridharan, A. Tewari

On the Universality of Online Mirror Descent

  • K. Sridharan, N. Srebro, A. Tewari

Sparse Features for PCA-Like Linear Regression

  • M. Magdon-Ismail, C. Boutsidis, P. Drineas

Trace Lasso: a trace norm regularization for correlated designs

  • E. Grave, G. Obozinski, F. Bach